Large Fixed-Diameter Graphs are Good Expanders
نویسندگان
چکیده
We revisit the classical question of the relationship between the diameter of a graph and its expansion properties. One direction is well understood: expander graphs exhibit essentially the lowest possible diameter. We focus on the reverse direction. We show that “sufficiently large” graphs of fixed diameter and degree must be “good” expanders. We prove this statement for various definitions of “sufficiently large” (multiplicative/additive factor from the largest possible size), for different forms of expansion (edge, vertex, and spectral expansion), and for both directed and undirected graphs. A recurring theme is that the lower the diameter of the graph and (more importantly) the larger its size, the better the expansion guarantees. We discuss the implications of our results for open questions in graph theory and for recent advances in computer networking, and leave the reader with many interesting open questions.
منابع مشابه
Asymptotically Good Low-Rate Error-Correcting Codes through Pseudo-Random Graphs
A new technique, based on the pseudo-random properties of certain graphs, known as expanders, is used to obtain new simple explicit constructions of asymptotically good codes. In one of the constructions, the expanders are used to enhance Justesen codes by replicating, shuffling and then regrouping the code coordinates. For any fixed (small) rate, and for sufficiently large alphabet, the codes ...
متن کاملConstruction of asymptotically good low-rate error-correcting codes through pseudo-random graphs
A new technique, based on the pseudo-random properties of certain graphs, known as expanders, is used to obtain new simple explicit constructions of asymptotically good codes. In one of the constructions, the expanders are used to enhance Justesen codes by replicating, shuffling and then regrouping the code coordinates. For any fixed (small) rate, and for sufficiently large alphabet, the codes ...
متن کاملSymmetric Groups and Expanders
We construct an explicit generating sets Fn and F̃n of the alternating and the symmetric groups, which make the Cayley graphs C(Alt(n), Fn) and C(Sym(n), F̃n) a family of bounded degree expanders for all sufficiently large n. These expanders have many applications in the theory of random walks on groups and other areas of mathematics. A finite graph Γ is called an ǫ-expander for some ǫ ∈ (0, 1), ...
متن کاملSystolic Expanders of Every Dimension
In recent years a high dimensional theory of expanders has emerged. The notion of combinatorial expanders of graphs (i.e. the Cheeger constant of a graph) has seen two generalizations to high dimensional simplicial complexes. One generalization, known as coboundary expansion is due to Linial and Meshulem; the other, which we term here systolic expansion, is due to Gromov, who showed that systol...
متن کاملLecture 7 : Expanders
In this lecture we give basic background about expander graphs. Expanders are graphs with strong connectivity properties: every two large subsets of vertices in an expander have many edges connecting them. Surprisingly, one can construct very sparse graphs that are expanders, and this is what makes them so useful. Expanders have a huge number of applications in theoretical computer science: in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016